Coarse Mesh Superconvergence in Isogeometric Frequency Analysis of Mindlin–Reissner Plates with Reduced Integration and Quadratic Splines
نویسندگان
چکیده
Abstract A frequency accuracy study is presented for the isogeometric free vibration analysis of Mindlin–Reissner plates using reduced integration and quadratic splines, which reveals an interesting coarse mesh superconvergence. Firstly, error estimates discretization with splines are rationally derived, where degeneration to Timoshenko beams discussed as well. Subsequently, in accordance these measures, shear locking issue corresponding full formulation elaborated respect deterioration. On other hand, locking-free characteristic uniform illustrated by its superior accuracy. Meanwhile, it found that a superconvergence sixth order arises meshes when employed deformable plates, comparison ultimate fourth progressively refined. Furthermore, size threshold provided The proposed theoretical results consistently proved numerical experiments.
منابع مشابه
Isogeometric analysis with Powell-Sabin splines
This paper presents the use of Powell-Sabin splines in the context of isogeometric analysis for the numerical solution of advectiondiffusion-reaction equations. Powell-Sabin splines are piecewise quadratic C functions defined on a given triangulation with a particular macro-structure. We discuss the Galerkin discretization based on a normalized Powell-Sabin B-spline basis. We focus on the accur...
متن کاملIsogeometric Analysis using T-splines
We explore T-splines, a generalization of NURBS enabling local refinement, as a basis for isogeometric analysis. We review T-splines as a surface design methodology and then develop it for engineering analysis applications. We test T-splines on some elementary twodimensional and three-dimensional fluid and structural analysis problems and attain good results in all cases. We summarize current l...
متن کاملMesh grading in isogeometric analysis
This paper is concerned with the construction of graded meshes for approximating so-called singular solutions of elliptic boundary value problems by means of multipatch discontinuous Galerkin Isogeometric Analysis schemes. Such solutions appear, for instance, in domains with re-entrant corners on the boundary of the computational domain, in problems with changing boundary conditions, in interfa...
متن کاملIsogeometric analysis in electromagnetics: B-splines approximation
We introduce a new discretization scheme for Maxwell equations in two space dimension. Inspired by the new paradigm of Isogeometric analysis introduced in [16], we propose an algorithm based on the use of bivariate B-splines spaces suitably adapted to electromagnetics. We construct B-splines spaces of variable interelement regularity on the parametric domain. These spaces (and their push-forwar...
متن کاملAdaptive isogeometric analysis using rational PHT-splines
Polynomial splines over hierarchical T-meshes (PHT-splines) have an efficient and simple local refinement algorithm, but fail to represent exactly certain complex engineering geometries. In this paper, based on the current isogeometric framework, we overcome the drawbacks of PHT-splines by extending these to Rational PHT-splines (RPHT-splines), and explore RPHT-splines as the basis for analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mechanica Solida Sinica
سال: 2022
ISSN: ['0894-9166', '1860-2134']
DOI: https://doi.org/10.1007/s10338-022-00365-w